Keywords for Journal of the European Ceramic Society

Authors should select a maximum of five keywords. Each keyword should be accompanied by the capital letter denoting the category from which the keyword has been selected. If authors wish they may nominate one keyword which is not included in the list below. The list of up to five keywords should appear on the title page of each paper submitted for consideration following the abstract.

Mullite	
Calcination Chemical properties Niobates	
Drying Colour Nitrides	
Extrusion Corrosion Oxide supercon	ductors
Films Creep Perovskites	
Finishing Dielectric properties PLZT	
Firing Diffusion PZT	
Grain growth Electrical properties Porcelain	
Hot isostatic pressing Electrical conductivity RBAO	
Hot pressing Fatigue Si ₃ N ₄	
Implantation Ferroelectric properties Sialon	
Injection moulding Fracture SiC	
Joining Hardness Silicate	
Microwave processing Impedance Silicides	
Milling Ionic conductivity SiO ₂	
Mixing Lifetime Spinels	
Powders: solid state reaction Magnetic properties Tantalates	
Powders: gas phase reaction Mechanical properties TiO ₂	
Powders: chemical preparation Optical properties Traditional cere	amics
Precursors: organic Piezoelectric properties Transition meta	al oxides
Pressing Plasticity UO ₂	
Shaping Strength Y ₂ O ₃	
Sintering Superconductivity ZnO	
Slip casting Thermal conductivity ZrO ₂	
Sol-gel processes Thermal expansion	
Suspensions Thermal properties	
Tape casting Thermal shock resistance E. Applications	ı

B. Structure and Microstructure

Wear resistance Actuators Armour **Batteries**

Composites Biomedical applications Defects D. Compositions Electron microscopy Capacitors

Cutting tools Failure analysis Al_2O_3 Engine components Al₂TiO₅ Fibres Alkali oxides Fuel cells Grain size

Alkaline earth oxides

Toughness and toughening

Functional applications Grain boundaries Hard magnets **Impurities** Apatite Inclusions β -Al₂O₃ Insulators BaTiO₃ and titanates Lamp envelopes Interfaces

Membranes Microstructure-final BeO Microstructure-prefiring **Borides** Nuclear applications Carbides PTC devices Nanocomposites Non-destructive evaluation Carbon Refractories Optical microscopy CeO₂ Sensors

Platelets Clays Soft magnets Structural applications **Porosity** Dimox

Ferrites Substrates Spectroscopy Thermistors Surfaces Glass Glass ceramics Varistors Whiskers X-ray methods Halides Wear parts